## Three New Alkaloids, Paxiphyllines C – E, from Daphniphyllum paxianum

by Yu Zhang<sup>a</sup>)<sup>b</sup>), Ying-Tong Di<sup>a</sup>), Hai-Yang Liu<sup>a</sup>), Chun-Shun Li<sup>a</sup>), Cheng-Jian Tan<sup>a</sup>), Qiang Zhang<sup>a</sup>), Xin Fang<sup>a</sup>), Shun-Lin Li<sup>a</sup>), and Xiao-Jiang Hao<sup>\*a</sup>)

<sup>a</sup>) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China

(phone: +86-871-5223263; fax: +86-871-5219684; e-mail: haoxj@mail.kib.ac.cn)

<sup>b</sup>) Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China

Nine *Daphniphyllum* alkaloids, including three new ones, paxiphyllines C-E (1-3, resp.), were isolated from the twigs and the leaves of *Daphniphyllum paxianum*. Paxiphylline C (1) represents the first example of *Daphniphyllum* alkaloids with a carbonyldioxy group. Their structures were elucidated on the basis of spectroscopic data.

**Introduction.** – Daphniphyllum alkaloids with highly complex polycyclic systems are a group of structurally diverse natural products that were isolated from plants of the genus Daphniphyllum [1]. Their unique ring systems have been the attractive targets for total synthesis as well as biosynthetic studies [1-7]. In recent years, many new alkaloids with novel skeletons have been obtained from this genus [3-7]. In the course of a further investigation on the twigs and leaves of Daphniphyllum paxianum [3c][3e][5d][5e], three new alkaloids 1-3, namely paxiphyllines C (1), D (2), and E (3), were obtained together with six known ones (4-9): daphnicyclidin A (4) [4], daphnicyclidin B (5) [4], longistylumphylline A (6) [5a], daphnilongeranin A (7) [5b], daphmacrine (8) [6], and daphnilactone B (9) [1][7]. Herein, we describe the isolation and structure elucidation of the new compounds 1-3.

**Results and Discussion.** – Paxiphylline C (1) was obtained as an optically active, light yellow solid. The molecular formula of 1 was established as  $C_{25}H_{31}NO_7$  by HR-ESI-MS (m/z 458.2191 ([M+H]<sup>+</sup>; calc. 458.2178)), indicating eleven degrees of unsaturation. The UV absorptions at 361 (4.1) and 292 (4.1) nm suggested the presence of a conjugated cyclopentadiene moiety [4][8]. Relevant IR absorptions implied the presence of OH (3427 cm<sup>-1</sup>) and CO (1745, 1688 cm<sup>-1</sup>) functionalities. The 1D- and 2D-NMR spectra revealed 25 <sup>13</sup>C signals, comprising one quaternary C-atom, and nine trisubstituted sp<sup>2</sup> C-atoms, four sp<sup>3</sup> CH groups, seven sp<sup>3</sup> CH<sub>2</sub> groups, two Me and two MeO groups. The nine trisbustituted sp<sup>2</sup> C-atoms were attributable to two ester C=O groups ( $\delta$ (C) 175.9 and 155.6), one ketone C=O group at  $\delta$ (C) 202.7, and three tetrasubstituted C=C bonds (*Table 1*). The NMR spectra also indicated two CH<sub>2</sub> groups ( $\delta$ (C) 60.2, 54.7) and one CH group ( $\delta$ (C) 66.4) next to an amino group. Since two ester C=O groups, one ketone C=O group, and three C=C bonds accounted for 6

<sup>© 2008</sup> Verlag Helvetica Chimica Acta AG, Zürich







Table 1. <sup>13</sup>*C*-*NMR Data of* **1**, **2**, and **3**. At 100 MHz,  $\delta$  in CDCl<sub>3</sub>; in ppm.

|       | 1         | 2               | 3               |       | 1          | 2         | 3         |
|-------|-----------|-----------------|-----------------|-------|------------|-----------|-----------|
| C(1)  | 194.6 (s) | 211.2 (s)       | 211.3 (s)       | C(14) | 120.8(s)   | 114.4 (s) | 115.5 (s) |
| C(2)  | 46.9(d)   | 41.9(d)         | 42.3(d)         | C(15) | 126.9 (s)  | 170.2 (s) | 148.9 (s) |
| C(3)  | 17.1(t)   | 18.2(t)         | 19.3(t)         | C(16) | 27.5(t)    | 25.4(t)   | 25.0(t)   |
| C(4)  | 66.4(d)   | 86.6(d)         | 88.6 (d)        | C(17) | 69.0(t)    | 41.9(t)   | 65.2(t)   |
| C(5)  | 49.2(s)   | 48.0(s)         | 49.2(s)         | C(18) | 28.8(d)    | 31.3(d)   | 31.2(d)   |
| C(6)  | 47.7(d)   | 48.7(d)         | 46.5(d)         | C(19) | 54.7 $(t)$ | 67.2(t)   | 67.6(t)   |
| C(7)  | 60.2(t)   | 70.7(t)         | 69.1(t)         | C(20) | 16.9(q)    | 19.5(q)   | 19.6(q)   |
| C(8)  | 130.0(s)  | 59.9(s)         | 62.5(s)         | C(21) | 35.2(q)    | 24.5(q)   | 23.4(q)   |
| C(9)  | 129.3 (s) | 147.5 (s)       | 115.9 (s)       | C(22) | 175.9(s)   | 165.9(s)  | 165.5(s)  |
| C(10) | 202.7(s)  | 152.5(s)        | 162.9(s)        | C(23) | 52.8(q)    | 51.1(q)   | 51.1(q)   |
| C(11) | 39.2(t)   | 25.4(t)         | 27.5(t)         | C(24) | 155.6(s)   |           |           |
| C(12) | 26.0(t)   | 24.5(t)         | 21.7(t)         | C(25) | 54.5(q)    |           |           |
| C(13) | 125.7 (s) | 45.8 <i>(t)</i> | 41.9 <i>(t)</i> | . /   | (1)        |           |           |

out of 11 degrees of unsaturation, the remaining five degrees of unsaturation were assumed to be due to the presence of a pentacyclic system in **1**.

Analysis of the 2D-NMR spectra (including <sup>1</sup>H,<sup>1</sup>H-COSY, HMQC, and HMBC) of **1** established three fragments **a** (C(2) to C(4), and C(18) to C(19) and C(20)), **b** (C(6) to C(7), and to C(12), and C(11) to C(12)), and **c** (C(16) to C(17)) as shown with bold bonds in *Fig. 1*. HMBC Correlations of H–C(7) to C(4) and C(19) suggested that C(4), C(7), and C(19) were connected to each other through a N-atom. Connections between C(4), C(6), and Me(21) *via* C(5) were suggested by HMBC cross-peaks of Me(21) to C(4), C(5), and C(6) and H–C(6) to C(5). In addition, HMBC correlations of CH<sub>2</sub>(16) to C(9), C(14), and C(15), CH<sub>2</sub>(17) to C(15), and Me(21) to C(8) suggested compound **1** possessing an N-containing pentacyclic skeleton like daphnicyclidin H [4]. Furthermore, one MeO group connected to C(22) was indicated by HMBC correlation of MeO(23) to C(22). HMBC Correlations of MeO(25) and CH<sub>2</sub>(17) to C(24) indicated that C(17) and C(25) were connected through a O–CO–O group. Thus, the gross structure of paxiphylline C (**1**), an alkaloid of the daphnicyclidin-type, was elucidated as shown in *Fig. 1*.



Fig. 1. Key <sup>1</sup>H,<sup>1</sup>H-COSY and HMBC data of 1

The relative configuration of **1** was elucidated by using a ROESY spectrum as shown in the computer-generated 3D drawing (*Fig.* 2). The ROESY correlations  $H_{\beta}-C(7)/H-C(6)$ , H-C(6)/Me(21), Me(21)/H-C(4), and  $H-C(4)/H_{\beta}-C(3)$ , implied that H-C(6), Me(21), and H-C(4) are in  $\beta$ -configuration. The correlations  $H_{\beta}-C(3)/H-C(2)$  and  $H_{\beta}-C(3)/Me(20)$  implied that H-C(2) has  $\beta$ -configuration as well.

The molecular formula of paxiphylline D (2) was assigned as  $C_{23}H_{29}NO_4$  from HR-ESI-MS (m/z 384.2178 ([M + H]<sup>+</sup>; calc. 384.2174)), with ten degrees of unsaturation. The IR spectrum was indicative of the presence of a ketone C=O group (1701 cm<sup>-1</sup>), showing up at  $\delta$ (C) 211.2 ppm in the <sup>13</sup>C-NMR spectrum. The UV absorption at 291 nm (log  $\varepsilon$  = 4.2) and IR bands at 1663 and 1635 cm<sup>-1</sup> indicated the presence of an ester C=O group conjugated with two C=C bonds [8]. The <sup>1</sup>H- and <sup>13</sup>C-NMR data (*Tables 2* and *1*, resp.) of **2** revealed 23 <sup>13</sup>C signals corresponding to eight quaternary C-atoms, four CH groups, eight CH<sub>2</sub> groups, and three Me groups.

Comparison of the NMR data of **2** with those of longistylumphylline A [5a], showed that the compounds are closely related, except for significant changes of the chemical shifts of the C-atoms  $\alpha$  to the N-atom, namely C(4) ( $\delta$ (C) 86.6), C(7) (70.7),



Fig. 2. Key ROESY correlations of 1

|                 | 1                         | 2                         | 3                               |
|-----------------|---------------------------|---------------------------|---------------------------------|
| H-C(2)          | 2.46–2.51 ( <i>m</i> )    | 2.39 (br. s)              | 2.33 (br.)                      |
| $H_a - C(3)$    | 1.65 - 1.72 (m)           | 2.16 - 2.22(m)            |                                 |
| $H_b - C(3)$    | 2.11 - 2.18 (m)           | 2.46 - 2.52 (m)           | 2.41 - 2.50 (m)                 |
| H-C(4)          | 3.00 (br. s)              | 3.86 (br. s)              | 3.99 - 4.02 (m)                 |
| H-C(6)          | 2.28 (br.)                | 3.66 - 3.68(m)            | 3.24 - 3.30(m)                  |
| $H_a - C(7)$    | 2.53 - 2.59(m)            | 3.28 (br.)                | 3.13 - 3.17(m)                  |
| $H_b - C(7)$    | 3.93 - 4.01 (m)           | 3.35 - 3.39(m)            | 3.35 - 3.42 (m)                 |
| $H_{a} - C(11)$ |                           | 2.02 - 2.06 (m)           | 1.97 - 2.03 (m)                 |
| $H_{b} - C(11)$ | 2.46 - 2.59(m)            | 2.14 - 2.19(m)            | 2.22 - 2.29(m)                  |
| $H_{a} - C(12)$ | 1.66 - 1.76 (m)           | 1.82 - 1.88 (m)           | 1.76 - 1.83 (m)                 |
| $H_{b} - C(12)$ | 2.01 - 2.08 (m)           | 1.92 - 1.95(m)            | 1.97 - 2.05 (m)                 |
| $H_{a} - C(13)$ |                           | 2.84 - 2.89(m)            | 2.72 (d, J = 16.8)              |
| $H_{b} - C(13)$ |                           | 3.47 (br. $d, J = 16.0$ ) | 3.26 (d, J = 16.8)              |
| $H_{a} - C(16)$ | 2.75 - 2.83(m)            |                           | 2.69 - 2.76 (m)                 |
| $H_{b} - C(16)$ | 3.38 - 3.43 (m)           | 2.69 - 2.74 (m)           | 3.09 - 3.15(m)                  |
| $H_{a} - C(17)$ | 4.01 - 4.05(m)            | 2.88 (br. $d, J = 17.6$ ) | 3.97 (ddd, J = 10.8, 10.8, 3.6) |
| $H_{b} - C(17)$ | 4.06 - 4.11 (m)           | 2.96 (br. $d, J = 17.6$ ) | 4.18 (ddd, J = 10.8, 5.2, 5.2)  |
| H-C(18)         | 2.24 - 2.31 (m)           | 2.47 - 2.55 (m)           | 2.54 - 2.60 (m)                 |
| $H_a - C(19)$   | 3.11 (br. $d, J = 11.9$ ) |                           | 3.14 (dd, J = 13.8, 4.8)        |
| $H_{b} - C(19)$ | 3.56 - 3.63(m)            | 3.18 (dd, J = 15.6, 9.2)  | 3.62 (dd, J = 13.8, 7.3)        |
| Me(20)          | 1.29 (d, J = 7.0)         | 1.21 (d, J = 6.6)         | 1.16 (d, J = 6.7)               |
| Me(21)          | 0.99(s)                   | 1.37 (s)                  | 1.42 (s)                        |
| MeO(23)         | 3.74 (s)                  | 3.68(s)                   | 3.70 <i>(s)</i>                 |
| MeO(25)         | 3.60 (s)                  |                           |                                 |

Table 2. <sup>1</sup>*H*-*NMR Data of* **1**, **2**, and **3**. At 400 MHz,  $\delta$  in CDCl<sub>3</sub>; in ppm, *J* in Hz.

and C(19) (67.2) which resonated at lower field than those of longistylumphylline A (C(4) ( $\delta$ (C) 64.4), C(7) (54.1), and C(19) (49.7)), indicating that paxiphylline D (**2**) is the N-oxide form of longistylumphylline A.

Paxiphylline E (3) has the molecular formula  $C_{23}H_{29}NO_5$  as determined by HR-ESI-MS (m/z 400.2134 ( $[M + H]^+$ , calc. 400.2123)). IR Absorption bands at 1703 and 1626 cm<sup>-1</sup> indicated the presence of C=O- and C=C-functionalities. In accordance with the molecular formula, the presence of eight quaternary C-atoms, four CH groups,

eight CH<sub>2</sub> groups, and three Me groups was revealed by analyses of its <sup>1</sup>H- and <sup>13</sup>C-NMR data (*Tables 2* and *1*, resp.). A comparison of the <sup>13</sup>C chemical shifts of C(4), C(7), and C(19) ( $\delta$ (C) 88.6, 69.1, and 67.6, resp.) in **3** with those of daphnilongeranine A (**7**) ( $\delta$ (C) 67.2, 55.7, and 51.0, resp.) [5b], indicated the presence of an N-oxide group attached to these C-atoms. Thus, paxiphylline E (**3**) was implied to be the N-oxide form of daphnilongeranine A (**7**), which was further substantiated through 2D-NMR experiments, including <sup>1</sup>H,<sup>1</sup>H-COSY, HMQC, HMBC, and ROESY spectra.

The known alkaloids daphnicyclidin A (4), daphnicyclidin B (5), longistylumphylline A (6), daphnilongeranin A (7), daphmacrine (8), and daphnilactone B (9) were identified on the basis of their reported spectral data (ESI-MS, <sup>1</sup>H- and <sup>13</sup>C-NMR), compared with our values [1][4][5a][5b][6][7].

The cytotoxic activities of compounds 1-3 against the growth of tumor cell lines (P-388 (mouse lymphocytic leukemia) and A549 (human lung adenocarcinoma)) were evaluated. The results indicated that all the three alkaloids were inactive against the above cancer cell lines (50% effective dose of clonal inhibition ( $ED_{50}$ ) > 10 µg/ml).

## **Experimental Part**

General. TLC: SiO<sub>2</sub> plates; visualization by *Dragendorff*'s reagent. Column chromatography (CC): Silica gel H (SiO<sub>2</sub>; 10–40 µm; *Qingdao Marine Chemical Ltd. Co.*), amino silica gel (90–140 µm, *Fuji Silysia Chemical Ltd.*), *Sephadex LH-20* (40–70 µm, *Pharmacia*), and *Lichroprep RP-18* gel (40–63 µm, *Merck*). The MPLC instrument includes a *Büchi Pump Module C-605*, and a *Büchi Pump Manager C-615*. Optical rotations: *Jasco DIP-370* Digital polarimeter. IR Spectra: *Bio-Rad FTS-135* spectrometer, KBr discs, in cm<sup>-1</sup>. NMR Spectra: *Bruker AM-400* instrument (400/100 MHz) and *Bruker DRX-500* instrument (500/125 MHz);  $\delta$  in ppm rel. to Me<sub>4</sub>Si as internal standard, *J* in Hz. ESI-MS: *Finnigan MAT 90* instrument; in *m/z*. HR-ESI-MS: *API Qstar Pulsar LC/TOF* instrument.

*Plant Material.* The twigs and the leaves of *Daphniphyllum paxianum* were collected in Sichuan Province, P. R. China, in July 2005. The material was identified by Associate Prof. *Zhaoyang Zhang*, and a specimen was deposited with the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences.

*Extraction and Isolation.* The air dried and powdered twigs and leaves of *D. paxianum* (20.0 kg) were extracted with 95% EtOH, and the crude extract was adjusted with sat. tartaric acid to pH *ca.* 2. The acidic mixture was defatted with petroleum ether (PE), and then extracted with CHCl<sub>3</sub>. The aq. phase was basified to pH *ca.* 10 with sat. Na<sub>2</sub>CO<sub>3</sub>, and extracted with CHCl<sub>3</sub> to obtain the crude alkaloid fraction (16.0 g). This material was subjected to SiO<sub>2</sub> CC with CHCl<sub>3</sub>/MeOH ( $1:0 \rightarrow 0:1$ ) to obtain five major fractions (*Fr. A – E*). *Fr. B* (3.0 g), eluted with CHCl<sub>3</sub>/MeOH 30:1 and PE/Et<sub>2</sub>NH (30:1  $\rightarrow$  5:1), afforded **2** (8 mg), **3** (9 mg), **6** (7 mg), **7** (10 mg), **8** (7 mg), and **9** (10 mg). *Fr. D* (2.3 g) was purified by CC (*C*<sub>18</sub> reversed-phase silica gel, MeOH/H<sub>2</sub>O 4:6) to give **1** (16 mg), **4** (25 mg), and **5** (17 mg).

Paxiphylline C (= Methyl (6a\$,11R,12b\$)-5,6,6a,79,10,11,12,12a,12b-Decahydro-13-hydroxy-3-{2-[(methoxycarbonyl)oxy]ethyl}-10,12b-dimethyl-4-oxo-4H-11,1-(metheno)azuleno[4,5-a]indolizine-2-carboxylate; **1**). Light yellow solid. [a]<sub>18</sub><sup>18</sup> = -11.8 (c = 0.23, MeOH). UV (MeOH): 361 (4.1), 292 (4.1). IR (KBr): 3427, 2928, 1745, 1688, 1553, 1440, 1424, 1354, 1270, 1165, 1077, 944. <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 2* and 1, resp. ESI-MS: 458.3 ([M + H]<sup>+</sup>). HR-ESI-MS: 458.2191 ([M + H]<sup>+</sup>, C<sub>25</sub>H<sub>32</sub>NO<sup>+</sup>; calc. 458.2178).

Paxiphylline D (= Methyl (4a\$,8\$,10aR,10b\$,10cR)-2,3,4,4a,5,7,8,9,10,10a,10b,11-Dodecahydro-8,10b-dimethyl-13-oxo-1H-9,10c-methanocyclopenta[1,8]azuleno[4,5-a]indolizine-12-carboxylate 6-Ox-ide; **2**). Colorless oil.  $[a]_{D}^{25} = -91.0$  (c = 0.50, MeOH). UV (MeOH): 291 (4.2). IR (KBr): 2925, 1701, 1663, 1635, 1437, 1352, 1262, 1120, 1062. <sup>1</sup>H- and <sup>13</sup>C-NMR: Tables 2 and 1, resp. ESI-MS: 384.4 ( $[M + H]^+$ ). HR-ESI-MS: 384.2178 ( $[M + H]^+$ , C<sub>23</sub>H<sub>30</sub>NO<sub>4</sub><sup>+</sup>; calc. 384.2174).

Paxiphylline E (= Methyl (5a\$,9\$,11aR,11b\$,11c\$)-1,4,5,5a,6,8,9,10,11,11a,11b,12-Dodecahydro-9,11b-dimethyl-14-oxo-2H-10,11c-methanopyrano[4',3',2':1,8]azuleno[4,5-a]indolizine-13-carboxylate 7-Oxide; **3**). Colorless solid.  $[a]_{21}^{21} = -42.9$  (c = 0.14, MeOH). UV (MeOH): 321 (4.0). IR (KBr): 3430 (H<sub>2</sub>O), 2924, 1703, 1626, 1437, 1259, 1129, 1069, 1000. <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 2* and *1*, resp. ESI-MS: 400.3 ( $[M + H]^+$ ). HR-ESI-MS: 400.2134 ( $[M + H]^+$ , C<sub>23</sub>H<sub>30</sub>NO<sup>+</sup><sub>5</sub>; calc. 400.2123).

The Financial support of the *National Science Foundation* (No. 20672120) of P. R. China is gratefully acknowledged. We thank Associate Prof. *Zhaoyang Zhang*, Kunming Institute of Botony, Chinese Academy of Sciences (CAS), for the collection and identification of the plant material.

## REFERENCES

- J. Kobayashi, H. Morita, in 'The Alkaloids', Ed. G. A. Cordell, Academic Press, New York, 2003, Vol. 60, p. 165.
- [2] G. A. Wallence, C. H. Heathcock, J. Org. Chem. 2001, 66, 450; C. H. Heathcock, Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14323; C. H. Heathcock, D. Joe, J. Org. Chem. 1995, 60, 1131; C. H. Heathcock, Angew. Chem., Int. Ed. 1992, 31, 665.
- [3] a) Q. Zhang, Y.-T. Di, H.-Y. Liu, N.-C. Kong, S. Gao, C.-S. Li, Y. Zhang, S.-L. Li, X.-J. Hao, Helv. Chim. Acta 2008, 91, 914; b) Y.-T. Di, L.-L. Liu, C.-S. Li, Y. Zhang, Q. Zhang, S.-Z. Mu, Q.-Y. Sun, F.-M. Yang, H.-Y. Liu, X.-J. Hao, Helv. Chim. Acta 2008, 91, 838; c) S.-Z. Mu, J.-S. Wang, X.-S. Yang, H.-P. He, C.-S. Li, Y.-T. Di, Y. Wang, Y. Zhang, X. Fang, L.-J. Huang, X.-J. Hao, J. Nat. Prod. 2008, 71, 564; d) C. Tan, Y. Di, Y. Wang, Y. Wang, S. Mu, S. Gao, Y. Zhang, N. Kong, H. He, J. Zhang, X. Fang, C. Li, Y. Lu, X. Hao, Tetrahedron Lett. 2008, 49, 3376; e) Y. Zhang, H. He, Y. Di, S. Mu, Y. Wang, J. Wang, C. Li, N. Kong, S. Gao, X. Hao, Tetrahedron Lett. 2007, 48, 9104; f) S.-Z. Mu, C.-S. Li, H.-P. He, Y.-T. Di, Y. Wang, Y.-H. Wang, Z. Zhang, Y. Lu, L. Zhang, X.-J. Hao, J. Nat. Prod. 2007, 70, 1628; g) N.-C. Kong, H.-P. He, Y.-H. Wang, S.-Z. Mu, Y.-T. Di, X.-J. Hao, J. Nat. Prod. 2007, 70, 1348; h) N.-C. Kong, H.-P. He, Y.-H. Wang, S. Gao, Y.-T. Di, X.-J. Hao, Helv. Chim. Acta 2007, 90, 972; i) C.-S. Li, Y.-T. Di, H.-P. He, S. Gao, Y.-H. Wang, Y. Lu, J.-L. Zhong, X.-J. Hao, Org. Lett. 2007, 9, 2509; j) Y.-T. Di, H.-P. He, Y.-S. Wang, L.-B. Li, Y. Lu, J.-B. Gong, X. Fang, N.-C. Kong, S.-L. Li, H.-J. Zhu, H.-J. Hao, Org. Lett. 2007, 9, 1355; k) S.-Z. Mu, X.-W. Yang, Y.-T. Di, H.-P. He, Y. Wang, Y.-H. Wang, L. Li, X.-J. Hao, Chem. Biodivers. 2007, 4, 129; 1) C. Li, H. He, Y. Di, Y. Wang, S. Mu, S. Li, S. Gao, Z. Gao, X. Hao, Tetrahedron Lett. 2007, 48, 2737; m) Y.-T. Di, H.-P. He, C.-S. Li, J.-M. Tian, S.-Z. Mu, S.-L. Li, S. Gao, X.-J. Hao, J. Nat. Prod. 2006, 69, 1745; n) Y.-T. Di, H.-P. He, Y. Lu, P. Yi, L. Li, L. Wu, X.-J. Hao, J. Nat. Prod. 2006, 69, 1074; o) S.-Z. Mu, Y. Wang, H.-P. He, X.-W. Yang, Y.-H. Wang, Y.-T. Di, Y. Lu, Y. Chang, X.-J. Hao, J. Nat. Prod. 2006, 69, 1065.
- [4] J. Kobayashi, Y. Inaba, M. Shiro, N. Yoshida, H. Morita, J. Am. Chem. Soc. 2001, 123, 11402.
- [5] a) X. Chen, Z.-J. Zhan, J.-M. Yue, *Helv. Chim. Acta* 2005, 88, 854; b) S.-P. Yang, H. Zhang, C.-R. Zhang, H.-D. Cheng, J.-M. Yue, *J. Nat. Prod.* 2006, 69, 79; c) S.-P. Yang, J.-M. Yue, *J. Org. Chem.* 2003, 68, 7961; d) Z.-J. Zhan, S.-P. Yang, J.-M. Yue, *J. Org. Chem.* 2004, 69, 1726; e) S.-P. Yang, J.-M. Yue, *Org. Lett.* 2004, 6, 1401.
- [6] T. Nakano, Y. Saeki, Tetrahedron Lett. 1967, 8, 4791.
- [7] H. Morita, N. Yoshida, J. Kabayashi, Tetrahedron 2000, 56, 2641.
- [8] S. Yamamura, Y. Hirata, *Tetrahedron Lett.* 1974, 15, 2849.

Received May 16, 2008